We enable nucleic acid labeling bioconjugation
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
product_variation

Product Application for...

Product Emission color

Product Enatiomeric structure

Product Kits for..

Product Label Position

Product Linker type

Product Metabolit

Product Modification Type

Product Nucleoside

Product Nucleosites

Product Protection Type

Product Sort by

Product Sugar core

Pseudouridine Triphosphate (Pseudo-UTP)

Stabilizing Triphosphate for RNA

Currency:  
  • Size
  • Catalog No.
  • Price
  • 1 µmol
  • BCT-23-S

  • € 65,00
  • 5 µmol
  • BCT-23-L

  • € 300,00
Clear
  • Pseudouridine Triphosphate (Pseudo-UTP) modified mRNA exhibits longer half-life, a better translation efficiency and its immunological properties are improved.

    LITERATURE

    Activation of Autoreactive B Cells by Endogenous TLR7 and TLR3 RNA Ligands, N. Green et al., 2012, J. Biol. Chem., Vol. 287(47), p. 39789-39799.

    https://doi.org/10.1074/jbc.M112.383000

    Transient Focal Membrane Deformation Induced by Arginine-rich Peptides Leads to Their Direct Penetration into Cells, H. Hirose et al., 2012, Mol Ther., Vol. 20(5), p. 984-993.

    https://doi.org/10.1038/mt.2011.313

    Feeder-Free Derivation of Human Induced Pluripotent Stem Cells with Messenger RNA, L. Warren et al., 2012, Sci Rep., Vol. 2, p. 657.

    https://doi.org/10.1038/srep00657

    Nucleoside modifications in RNA limit activation of 2′-5′-oligoadenylate synthetase and increase resistance to cleavage by RNase L, B. Anderson et al., 2011, Nucleic Acids Research, Vol. 39(21), p. 9329-9338.

    https://doi.org/10.1093/nar/gkr586

    Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA, K. Karikó et al., 2011, Nucleic Acids Research, Vol. 39(21), p. e142.

    https://doi.org/10.1093/nar/gkr695

    Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation, B. Anderson et al., 2010, Nucleic Acids Research, Vol. 38(17), p. 5884-5892.

    https://doi.org/10.1093/nar/gkq347

    Highly Efficient Reprogramming to Pluripotency and Directed Differentiation of Human Cells with Synthetic Modified mRNA, L. Warren et al., 2010, Cell Stem Cell, Vol. 7(5), p. 618-630.

    https://doi.org/10.1016/j.stem.2010.08.012

    Incorporation of Pseudouridine Into mRNA Yields Superior Nonimmunogenic Vector With Increased Translational Capacity and Biological Stability, K. Karikó et al., 2008, Molecular Therapy, Vol. 16(11), p. 1833-1840.

    https://doi.org/10.1038/mt.2008.200

    Norovirus Proteinase-Polymerase and Polymerase Are Both Active Forms of RNA-Dependent RNA Polymerase, G. Belliot et al., 2005, Journal of Virology, Vol. 79(4), p. 2393-2403.

    https://doi.org/10.1128/jvi.79.4.2393-2403.2005

    Suppression of RNA Recognition by Toll-like Receptors: The Impact of Nucleoside Modification and the Evolutionary Origin of RNA, K. Karikó et al., 2005, Immunity, Vol. 23(2), p. 165-175.

    https://doi.org/10.1016/j.immuni.2005.06.008

    Pseudouridine in RNA: What, Where, How, and Why, M. Charette et al., 2000, IUBMB Life, Vol. 49(5), p. 341-351.

    http://bpg.utoledo.edu/~afedorov/ABPG2011/L23/pseudouridine2000.pdf

    Comparative Utilization of Pseudouridine Triphosphate and Uridine Triphosphate by Ribonucleic Acid Polymerase, I. Goldberg et al., 1963, J. Biol. Chem., Vol. 238(5), p. 1793-1800.

    https://doi.org/10.1016/S0021-9258(18)81139-5

    5-Ethynyluridine: A Bio-orthogonal Uridine Variant for mRNA-Based Therapies and Vaccines, S. Maassen et al., 2023, ChemBioChem, Vol. 24(5), e202200658.

    https://doi.org/10.1002/cbic.202200658

    Incorporation of Synthetic mRNA in Injectable Chitosan-Alginate Hybrid Hydrogels for Local and Sustained Expression of Exogenous Proteins in Cells, H. Steinle et al., 2018, Int. J. Mol. Sci., Vol. 19(5), p. 1313.

    https://doi.org/10.3390/ijms19051313

    Prediction of lipid nanoparticles for mRNA vaccines by the machine learning algorithm, W. Wang et al., 2022, Acta Pharmaceutica Sinica B, Vol. 12(6), p. 2950-2962.

    https://doi.org/10.1016/j.apsb.2021.11.021

    • Molecular Formula

      C9H15N2O15P3

    • Shelf Life

      12 months unopened after receipt

    • Storage Conditions

      -20 °C

    • Molecular Weight

      484.14 g/mol

    • Purity

      ≥ 95% (HPLC)

    • Physical State

      100 mM clear aquaeous solution; colorless

    • CAS Number

      28022-82-4 (sodium salt)

      1175-34-4 (free acid)

    • Additional name

      Pseudo-UTP, 5-Ribosyl Uracil

    • Absorption (max)

      λmax = 262 nm

    • Ɛ (max)

      7,500 cm-1M-1

X