• filter
Currency:  
[woof sid="shoppingCart" autohide=0]

5-Carboxytetramethylrhodamine Azide (5-TAMRA-Azide)

TAMRA fluorescent dye to label DNA/RNA

Size Catalog No. Price
5 mg BCFA-008-5  100,00
10 mg BCFA-008-10  150,00
Clear

Chemical Properties

  • Molecular Formula

    C28H28N6O4

  • Shelf Life

    12 months unopened after receipt

  • Storage Conditions

    -20 °C, dark

  • Molecular Weight

    512.56 g/mol

  • Purity

    ≥ 95% (LCMS)

  • Physical State

    pink to dark red colored solid

  • CAS Number

    1192590-89-8

  • Additional name

    5-TAMRA-Azide; 5-Carboxytetramethylrhodamine Azide, 5-((3-Azidopropyl)carbamoyl)-2-(6-(dimethylamino)-3-(dimethyliminio)-3H-xanthen-9-yl)benzoate

  • Excitation (max)

    DMSO or DMF: 546 nm

  • Emission (max)

    DMSO or DMF: 579 nm

  • Ɛ (max)

    DMSO or DMF = 91,000 cm-1M-1

  • Solubility

    DMSO, DMF, MeOH

  • Preparation/Handling

    For a 10 mM solution add 195 μL to 1 mg.

Product Information

5-Carboxytetramethylrhodamine Azide (5-TAMRA-Azide) is a reporter reagent that allows efficient fluorescent labeling of nucleic acids by click bioconjugation. It is often used as FRET-acceptor in combination with FAM. Just like many rhodamine-based dyes, it is quite photostable between pH 4 and 9. It shows identical spectral properties to Alexa Fluor® 555 or DyLight 549 dyes.

 

LITERATURE

Postsynthetic DNA Modification through the Copper-Catalyzed Azide–Alkyne Cycloaddition Reaction, P. M. E. Gramlich et al., 2008, Angew. Chemie Int. Ed., Vol. 47, p. 8350–8358.

https://doi.org/10.1002/anie.200802077

Click–Click–Click: Single to Triple Modification of DNA, P. M. E. Gramlich et al., 2008, Angew. Chemie Int. Ed., Vol. 47, p. 3442-3444.

https://doi.org/10.1002/anie.200705664

A chemical method for fast and sensitive detection of DNA synthesis in vivo, A. Salic et al., 2008, Proc. Natl. Acad. Sci. U. S. A., Vol. 105, p. 2415–2420.

https://doi.org/10.1073/pnas.0712168105

Fluorescent labelling of in situ hybridisation probes through the copper-catalysed azide-alkyne cycloaddition reaction, S. Hesse et al., 2016, Chromosome Research, Vol. 24, p. 299–307.

https://doi.org/10.1007/s10577-016-9522-z

Genetic Encoding of a Bicyclo[6.1.0]nonyne-Charged Amino Acid Enables Fast Cellular Protein Imaging by Metal-Free Ligation, A. Borrmann et al., 2012, ChemBioChem, Vol. 13(14), p. 2094-2099.

https://doi.org/10.1002/cbic.201200407

New insights into the intracellular distribution pattern of cationic amphiphilic drugs, M. Vater et al., 2017, Scientific Reports, Vol 7, p. 44277.

https://doi.org/10.1038/srep44277

The Cyanobacterial “Nutraceutical” Phycocyanobilin Inhibits Cysteine Protease Legumain, I. V. L. Wilkinson et al., 2022, ChemBioChem, Vol. 24(5), p. e202200455.

https://doi.org/10.1002/cbic.202200455

X
[contact-form-7 id="5560" title="Product Inquiry"]